

Title: PCSR – Sub-chapter 1.3 – Comparison with reactors of similar design

UKEPR-0002-013 Issue 05

Total number of pages: 13				Page No.: I	/ III		
Chapter Pilot: G.	. MARTIN						
Name/Initials	JR102	Date	10-10-2012				
Approved for ED	F by: A. MARE		Approved for AF	REVA by: G. C	RAIG		
Name/Initials	A.Je Maeld	Date	10-10-2012	Name/Initials	G Craig	Date	10-10-2012

REVISION HISTORY

Issue	Description	Date
00	First issue (includes technical, co-applicant and INSA review comments)	27-04-2008
01	Second issue (includes corrections and wording clarifications)	30-06-2008
02	PCSR June 2009 update: Design evolutions to account for December 2008 design freeze (primary and secondary flow rates, temperatures, SG water mass) and clarifications/rewording.	22-06-2009
03	Consolidated Step 4 PCSR update: - Addition of non-computerised technology in I&C - Wording correction for Remote Shutdown Station	25-03-2011
04	Consolidated PCSR update: - Minor formatting changes	08-08-2012
05	Consolidated PCSR update: - UK EPR Main Primary System, "Accounting for break preclusion" updated to "HIC claim" - Minor typographical changes	10-10-2012

Title: PCSR – Sub-chapter 1.3 – Comparison with reactors of similar design

UKEPR-0002-013 Issue 05

Page No.:

II / III

Copyright © 2012

AREVA NP & EDF All Rights Reserved

This document has been prepared by or on behalf of AREVA NP and EDF SA in connection with their request for generic design assessment of the EPR^TM design by the UK nuclear regulatory authorities. This document is the property of AREVA NP and EDF SA.

Although due care has been taken in compiling the content of this document, neither AREVA NP, EDF SA nor any of their respective affiliates accept any reliability in respect to any errors, omissions or inaccuracies contained or referred to in it.

All intellectual property rights in the content of this document are owned by AREVA NP, EDF SA, their respective affiliates and their respective licensors. You are permitted to download and print content from this document solely for your own internal purposes and/or personal use. The document content must not be copied or reproduced, used or otherwise dealt with for any other reason. You are not entitled to modify or redistribute the content of this document without the express written permission of AREVA NP and EDF SA. This document and any copies that have been made of it must be returned to AREVA NP or EDF SA on their request.

Trade marks, logos and brand names used in this document are owned by AREVA NP, EDF SA, their respective affiliates or other licensors. No rights are granted to use any of them without the prior written permission of the owner.

Trade Mark

EPR[™] is an AREVA Trade Mark.

For information address:

AREVA NP SAS Tour AREVA 92084 Paris La Défense Cedex France

EDF
Division Ingénierie Nucléaire
Centre National d'Equipement Nucléaire
165-173, avenue Pierre Brossolette
BP900
92542 Montrouge
France

UK EPR	Title: PCSR – Sub-chapter 1.3 – Comparison with similar design	reactors of
	UKEPR-0002-013 Issue 05	Page No.:

TABLE OF CONTENTS

The content of this document consists of a single table.

UK EPR

PRE-CONSTRUCTION SAFETY REPORT

CHAPTER 1: INTRODUCTION AND GENERAL DESCRIPTION

SUB-CHAPTER : 1.3

PAGE : 1 / 10

Document ID.No. UKEPR-0002-013 Issue 05

SUB-CHAPTER 1.3 – COMPARISON WITH REACTORS OF SIMILAR DESIGN

Sub-chapter 1.3 consists of a comparison table of the main data for the UK EPR against the equivalent data for the latest generations of reactors built in France (N4 Reactors) and Germany (KONVOI Reactors), from which the EPR design is derived.

CHAPTER 1: INTRODUCTION AND GENERAL DESCRIPTION

SUB-CHAPTER: 1.3

PAGE : 2 / 10

SYSTEMS / PARAMETERS	UNIT	UK EPR	N4 Unit	KONVOI Reactor
GENERAL REMARKS				
Net electrical output	MW(e)	≈1630	1475	1365
Thermal power output (core)	MWth	4500	4250	3850
Efficiency	%	36	34.5	35.4
Service life	Years	60	40	40
Temperature programme		The average core temperature is constant in the upper power range (between 60% and 100% of the nominal power)	Linear reduction in average core temperature between 100% and 0% of power (the cold leg temperature varies slightly in a ≤4°C range)	The average core temperature is constant in the upper power range (between 50% and 100% of the nominal power)
MAIN PRIMARY SYSTEM (RCP) [RCS]			·
Number of loops		4	4	4
Operating pressure of RCP [RCS]	MPa	15.5	15.5	15.8
Design pressure of RCP [RCS]	MPa	17.6	17.2	17.6
Vessel inlet temperature in nominal conditions	°C	295.6	292.1	291
Vessel outlet temperature in nominal conditions	°C	329.8	329.1	324.5
SECONDARY SIDE				
Feed water temperature at 100% power	°C	230	229.5	218
Steam pressure at SG outlet (abs) at 100% power	MPa	7.71	7.23	6.45
Main steam flow rate	kg/s	2552.4 (4x638.1)	2400	2050

CHAPTER 1: INTRODUCTION AND GENERAL DESCRIPTION

SUB-CHAPTER: 1.3

PAGE : 3 / 10

SYSTEMS / PARAMETERS	UNIT	UK EPR	N4 Unit	KONVOI Reactor
REACTOR CORE			·	
Fuel assembly				
Control principles at Nominal		Mixed solution:	X mode:	S Mode:
Power		X-N4 mode / S-Konvoi mode:	4 "grey" partially inserted units	Only "black" rods
		Only "black" rods	A mode: No control rods inserted	No separation of control rods /
		Separation of control rods /	deeply	shutdown rods
		shutdown rods		
Geometry of fuel assemblies		17X17-24	17X17-25	18X18-24
Number of fuel assemblies		241	205	193
Number of control rods		89	73	61
		(black control rods only)	(65 black control rods and 8 grey)	(black control rods only)
Active length of fuel assembly	mm	4200	4270	3900
(in cold service conditions)				
Total length of fuel assembly	mm	4800	4800	4830
Fuel rods				
Number of rods		63865	54120	57900
		(265 rods / assembly)		
External diameter	cm	0.95	0.95	0.95
Network pitch	cm	1.26	1.26	1.27
Gross average power density per unit length	W/cm	167.7	183.9	170.5
Cladding thickness	cm	0.057	0.057	0.0641
Fuel pellets				
Composition		UO ₂ or MOX	UO ₂	UO ₂ or MOX
Max design enrichment	%	5	5	4
U 235				

CHAPTER 1: INTRODUCTION AND GENERAL DESCRIPTION

SUB-CHAPTER: 1.3

PAGE : 4 / 10

SYSTEMS / PARAMETERS	UNIT	UK EPR	N4 Unit	KONVOI Reactor
Average discharge burnup	MWd	>55 (for 18-month cycles) to <65 (for	40	50
	/kgU	24-month cycles)		
MOX capacity		30 % as design basis	No MOX operation on the N4 currently	yes (50 %)
Structure of core				
Core baffles		Heavy reflector	Bolted baffle	Welded baffles
Primary coolant flow rate				
Total mass flow rate under	kg/s	22235	19714	18800
thermal-hydraulic conditions				
Mass flow rate in core under	kg/s	23135	20193	19875
nominal best estimate				
conditions				
Core instrumentation				
Ex-core instrumentation		Neutron flux measurement channels	Neutron flux measurement channels	Neutron flux measurement channels
In-core instrumentation		"assembly on vessel head"	"assembly from bottom of vessel"	"assembly on vessel head"
		40 aero-ball probes	6 mobile fission measurement detectors	28 aero-ball probes
		12 fixed Self Powered Neutron	60 instrumented fuel assemblies	8 fixed neutron detector fingers
		Detector fingers for a total of 72	E2 care evit thermosouples	48 (8x6) detectors
		neutron detectors and 36 (12x3) fixed	52 core exit thermocouples	24(8x3) core exit thermocouples
		core exit thermocouples		
REACTOR PRESSURE VESSE	_			
Vessel Design			-	<u>, </u>
Design temperature	°C	351	343	350
Internal diameter at core level	Mm	4870	4486	5000

UK EPR

PRE-CONSTRUCTION SAFETY REPORT

CHAPTER 1: INTRODUCTION AND GENERAL DESCRIPTION

SUB-CHAPTER: 1.3

PAGE

: 5 / 10

SYSTEMS / PARAMETERS	UNIT	UK EPR	N4 Unit	KONVOI Reactor
PRIMARY PUMPS				
Flow rate	m³/h	28320	24850	22700
(Best Estimate – design value)				
STEAM GENERATORS	•	·		
Secondary pressure boundary	MPa	10.0	9.1	8.83
design pressure				
Steam pressure at hot shutdown	MPa	9.0	≈ 8.1	≈ 8.0
(0%NP)				
Saturation pressure at full power	MPa	7.8	7.31	6.55
at SG tube bundle outlet				
Water mass in secondary	t	77.2	62	46
section of Steam Generator at				
full load				
COOLING SYSTEM AT SHUTDO	OWN	·		
Location of cooling system at		Outside Reactor Building	Inside Reactor Building	Outside Reactor Building
shutdown		· ·	· ·	
Number of pumps		4 (LHSI pumps)	2	4 mixed with LHSI
PRESSURISER	•			
Surge line connection on the		Axial Vertical	Axial Vertical	Lateral Horizontal
pressuriser				
Internal volume (hot)	m ³	75	60	65
MAIN PRIMARY SYSTEM	•	·		
Accounting for Break		HIC claim	No	Yes
Preclusion				
DESIGN OF RIS/RRA [SIS/RHRS				
Medium-Head Safety Injection (MHSI) pun	nps		
Number of pumps		4	2 via a header	4
Injection of the MHSI		In cold leg	In cold leg	In cold leg / hot leg

CHAPTER 1: INTRODUCTION AND GENERAL DESCRIPTION

SUB-CHAPTER: 1.3

PAGE

Document ID.No. UKEPR-0002-013 Issue 05

:6/10

SYSTEMS / PARAMETERS	UNIT	UK EPR	N4 Unit	KONVOI Reactor
Low-Head Safety Injection (LF	ISI) pump	os		
Number of pumps		4	2 via a header	4
Injection of the LHSI		In cold leg (short term) and hot leg (long term)	In cold leg for the short term (hot and cold for the long term)	In cold and hot leg
Accumulators				
Number of accumulators		4	4	8
Location of injection		In cold leg	In cold leg	In cold and hot leg
BORATION SYSTEM				
System used in normal operation		Chemical and Volume Control System (RCV) [CVCS]	Chemical and volume control system (RCV) [CVCS]	Chemical and volume control system (RCV) [CVCS]
Safety system		Extra Boration System (2 trains) RBS [EBS]	Chemical and volume control system (RCV) [CVCS] Use of RCV [CVCS] for long-term phase (manual phase) medium-pressure RIS [SIS] system and RCP [RCS] discharge (through pressuriser safety valve if the RCV [CVCS] is unavailable or ineffective)	Additional boration system (4 trains)
FEEDWATER SYSTEMS				
Under normal operation		Main Feed Water Supply system (ARE [MFWS]	Main Feed Water Supply system (ARE [MFWS]	Main Feed Water Supply (ARE) [MFWS]
In the shutdown and startup phases		Dedicated AAD [SSS] system for shutdown and startup operations (1 pump)	Use of ASG [EFWS] emergency supply system	Dedicated system for shutdown and startup operations with 2 pumps, both supplied by a backed-up power supply

UK EPR

PRE-CONSTRUCTION SAFETY REPORT

CHAPTER 1: INTRODUCTION AND GENERAL DESCRIPTION

SUB-CHAPTER: 1.3

PAGE

:7/10

SYSTEMS / PARAMETERS	UNIT	UK EPR	N4 Unit	KONVOI Reactor
Incidental and accidental conditions		Emergency Feed Water Supply system (ASG [EFWS])	Emergency Feed Water Supply system (ASG [EFWS])	Emergency Feed Water Supply system
		4 separate, independent trains with passive headers	4 pumps via headers (2 by 2)	4 separate, independent trains with passive headers
		The pumps are driven by electric motors backed up by the emergency diesel generators and the two SBO diesel generators	2 electrical pump-motor units 2 turbo-pumps	Each pump is driven by: - diesel (directly) and - electric motor (without backup supply)
SPENT FUEL POOL COOLING	SYSTEM	(PTR [FPCS])		
Volume of fuel pool	m ³	≈ 1590	1150	
Number of pumps		2 main lines (2 pumps per main line) and an emergency line (1 pump)	2 lines (1 pump for each train)	
Nominal mass flow rate	Kg/s	Cooling pumps for main lines: 222 Backup pump: 153	Cooling pumps: 105.6	
COMPONENT COOLING WATE	ER SYSTI	EM (RRI [CCWS])		
		4 trains (1 pump per train, 1 x100% heat exchanger per train)	2 lines (2 pumps per train, 2 x 50% heat exchangers per train)	
ESSENTIAL SERVICE WATER	SYSTEM	(SEC [ESWS])		
Number of pumps		4 (4 trains)	4 (2 trains, 2 x 100% pumps / train)	
ELECTRICAL SYSTEMS	1	<u> </u>	I	1
Supply under normal operation		4 independent trains in 2 divisions	2 independent trains in 2 divisions	4 independent trains in 4 divisions

CHAPTER 1: INTRODUCTION AND GENERAL DESCRIPTION

SUB-CHAPTER: 1.3

PAGE : 8 / 10

SYSTEMS / PARAMETERS	UNIT	UK EPR	N4 Unit	KONVOI Reactor
Emergency supplies		Concept of 4 trains, 4 divisions	Concept of 2 trains, 2 divisions	Concept of 4 trains, 4 divisions
		4 Emergency Diesels Generators with a power yield of about ≈ 7MWe each located in two geographically separated buildings (10 kV) 2 Station Black Out (SBO) Diesels (690 V).	2 diesel generators each of 8MWe in two separate buildings	4 diesel generators (each of 5MWe) in dedicated buildings and 4 ultimate diesels (each of 0.96kVA) in completely protected separate buildings
		Diversity through different generators' designs (10kV, 690 V) and fuelling	Diversity of 2 diesels through the addition: of a 135kW turbine generator for short-term operation supplied by secondary steam and of a 7MWe gas turbine for the long term	Diversity through size of the different diesel generators

CHAPTER 1: INTRODUCTION AND GENERAL DESCRIPTION

SUB-CHAPTER: 1.3

PAGE : 9 / 10

SYSTEMS / PARAMETERS	UNIT	UK EPR	N4 Unit	KONVOI Reactor
INSTRUMENTATION AND CON	TROL			
Technology		Digital (preferably "market" components) and non-computerised (NCSS)	Digital	Analogous, hard-wired. Digital and computer technology for certain applications
Main Control Room		Control through computer screens (except for the safety control panel) Protected against external hazards	Control through computer screens (except for the safety control panel) Protected against external hazards	Conventional with a digital assistance system Protected against external hazards
Remote shutdown station		Remote shutdown station with computer screens to bring the reactor to and maintain it in a safe state should the Main Control Room be unavailable	Remote shutdown station to bring the reactor to and maintain it in a safe state should the Main Control Room be unavailable	Backup control room (in a separate building) to keep the reactor in a safe state should the main control room be unavailable
		Protected against external hazards	Protected against external hazards	Protected against external hazards
CONTAINMENT				
Internal containment		Pre-stressed concrete with steel liner	Pre-stressed concrete no liner	Spherical steel containment
External wall		Reinforced concrete Annulus space at sub-pressure	Reinforced concrete Annulus space at sub-pressure	Reinforced concrete Annulus space at sub-pressure
Containment spray operation for PCCs		No	Yes 2 (100%) lines – pumps and heat exchangers outside containment	No
Pressure control system for Severe Accidents		Containment Heat Removal System 2 trains	Containment venting with filtering	Containment venting with filtering
Internal volume	m^3	≈ 80000	72700	70000

CHAPTER 1: INTRODUCTION AND GENERAL DESCRIPTION

SUB-CHAPTER: 1.3

PAGE : 10 / 10

SYSTEMS / PARAMETERS	UNIT	UK EPR	N4 Unit	KONVOI Reactor
WATER STORAGE TANK				
Location		In-Containment Refuelling Water Storage Tank (IRWST) located inside the Reactor Building	PTR [FPPS/FPCS] tank located outside the Reactor Building	Inside the annulus
Number		1	1	4